Sequence Similarity Parallelization over Heterogeneous Computer Clusters Using Data Parallel Programming Model
نویسندگان
چکیده
Sequence similarity, as a special case of data intensive applications, is one of the neediest applications for parallelization. Clustered commodity computers as a cost-effective platform for distributed and parallel processing, can be leveraged to parallelize sequence similarity. However, manually designing and developing parallel programs on commodity computers is a time-consuming, complex and error-prone process. In this paper, we present a sequence similarity parallelization technique using the Apache Storm as a stream processing framework with a data parallel programming model. Storm automatically parallelizes computations via a special user-defined topology that is represented as a directed acyclic graph. The proposed technique collects streams of data from a disk and sends them sequence by sequence to clustered computers for parallel processing. We also present a dispatching policy for balancing the cluster workload and managing the cluster heterogeneity to achieve more than 99 percent parallelism. An alignment-free method, known as n-gram modeling, is used to calculate similarities between the sequences. To show the cost-performance superiority of our method on clustered commodity computers over serial processing in powerful computers, we simply use UniProtKB/SwissProt dataset for evaluation of the performance of sequence similarity as an interesting large-scale Bioinformatics application.
منابع مشابه
Scalable Sequence Similarity Search and Join in Main Memory on Multi-cores
Similarity-based queries play an important role in many large scale applications. In bioinformatics, DNA sequencing produces huge collections of strings, that need to be compared and merged. One strategy to speed up similarity-based queries is parallelization on clusters using MapReduce. However, distributing data over a cluster also incurs high cost. At the same time, modern hardware offers pa...
متن کاملMixed Large-Eddy Simulation Model for Turbulent Flows across Tube Bundles Using Parallel Coupled Multiblock NS Solver
In this study, turbulent flow around a tube bundle in non-orthogonal grid is simulated using the Large Eddy Simulation (LES) technique and parallelization of fully coupled Navier – Stokes (NS) equations. To model the small eddies, the Smagorinsky and a mixed model was used. This model represents the effect of dissipation and the grid-scale and subgrid-scale interactions. The fully coupled NS eq...
متن کاملMixed Large-Eddy Simulation Model for Turbulent Flows across Tube Bundles Using Parallel Coupled Multiblock NS Solver
In this study, turbulent flow around a tube bundle in non-orthogonal grid is simulated using the Large Eddy Simulation (LES) technique and parallelization of fully coupled Navier – Stokes (NS) equations. To model the small eddies, the Smagorinsky and a mixed model was used. This model represents the effect of dissipation and the grid-scale and subgrid-scale interactions. The fully coupled NS eq...
متن کاملParallelization of Rich Models for Steganalysis of Digital Images using a CUDA-based Approach
There are several different methods to make an efficient strategy for steganalysis of digital images. A very powerful method in this area is rich model consisting of a large number of diverse sub-models in both spatial and transform domain that should be utilized. However, the extraction of a various types of features from an image is so time consuming in some steps, especially for training pha...
متن کاملA fuzzy mixed-integer goal programming model for a parallel machine scheduling problem with sequence-dependent setup times and release dates
This paper presents a new mixed-integer goal programming (MIGP) model for a parallel machine scheduling problem with sequence-dependent setup times and release dates. Two objectives are considered in the model to minimize the total weighted flow time and the total weighted tardiness simultaneously. Due to the com-plexity of the above model and uncertainty involved in real-world scheduling probl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Scalable Computing: Practice and Experience
دوره 18 شماره
صفحات -
تاریخ انتشار 2017